

BUG or FEATURE? The importance of data quality in science

Martin Kunz Physique Théorique, Université de Genève The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Planck: a microwave telescope in space

the cosmic microwave background: a photo of the adolescent universe

How to get good data?

- Avoid contamination: go to space
 - Clean environment (except when it isn't)
 - But: in space no-one can hear you scream (hard to fix problems)
- High sensitivity
 - Reduce 'statistical' error bars as far as possible
 - Makes any detection much more convincing
 - But needs control of 'systematic' problems
- Build in redundancy
 - Measure (and analyze) same things in different ways
 - Multiple detectors, redundant scanning, independent analyses
 - Allows for cross-checks
 - Prefer cross-correlations over auto-correlations
- Keep looking for problems

Ceci n'est pas une mesure ...

Ceci est une mesure!

visible at 145GHz with a 60 seconds period (the satellite rotates at 1 rpm), while the Galactic plane crossings (2 per rotation) are more visible at 545 GHz than at 143 GHz. The Dark bolometer sees no sky signal, but displays a similar population of glitches from cosmic rays.

Not everything can be anticipated

- There are always surprises
 - Checking everything is crucial
 - Simpler in the past: just look at all the data, see if something appears 'weird'
- No-one will be able to look at all the data ever again ... only machines!
 - Planck data set: ca 10¹² samples, a few terabytes
 - SKA (large radio telescope) expected data rate: several GB/s!
 - But how do you tell a computer what is `weird'?
- With Planck we found some surprises 'the hard way'
 - Active solar period: solar rays much worse than expected
 - Needed to build a detailed model of the satellite to understand signatures of cosmic ray hits to subtract them out
 - Space-qualified analog-digital converter was badly suited
 - In principle known, but no-one realized what it meant
 - Unexpected gain variations observed in data
 - Needed to characterize ADC on actual data (in space no-one...)

The ADC was an unknown unknown ... there were others ...
 Cesa

100-1b, ring 2960

ean Space Agency

planck

bolo: 100-1a, ring: 7626, rmsig TOI

planck

Jace Agency

Jace Agency

Calculate various stats per ring and loor for builiers Currently flagging rings for outliers in states, skewness, kurtosis Jackknife PBR calculations

PBR histogram

KS test

Mean-subtracted KS test

Average PSD

2010 July 5-6 HFI Core Team Meeting

H. C. Chiang & M. Kunz

Is it unexpected 'new physics'?

No-one will believe you

- In the 1990's there were multiple claims that the then-standard model of cosmology was not compatible with data
- For example from the distribution of galaxies in the Universe, or from the observed sizes of radio galaxies – but no-one trusted that data
- Here the opinion of the community in 1995:

scientific revolutions

But the scientific method works:

 Evidence accumulates and eventually new data triggers a paradigm 'phase transition' – trust in the data is critical!

scientific revolutions

But the scientific method works:

 Evidence accumulates and eventually new data triggers a paradigm 'phase transition' – trust in the data is critical!

And how about today?

Enigma of the day: Different observations find a different expansion rate of the Universe!

- Either some observations are wrong, or the model that connects them is wrong.
- We don't know yet...
- All of these observations were made taking outmost care to avoid problems.
- But we all know that there are surprises.

So far the community is skeptical as to whether this is 'new physics'

Vivien Bonvin, Sky&Telescope 2019

