

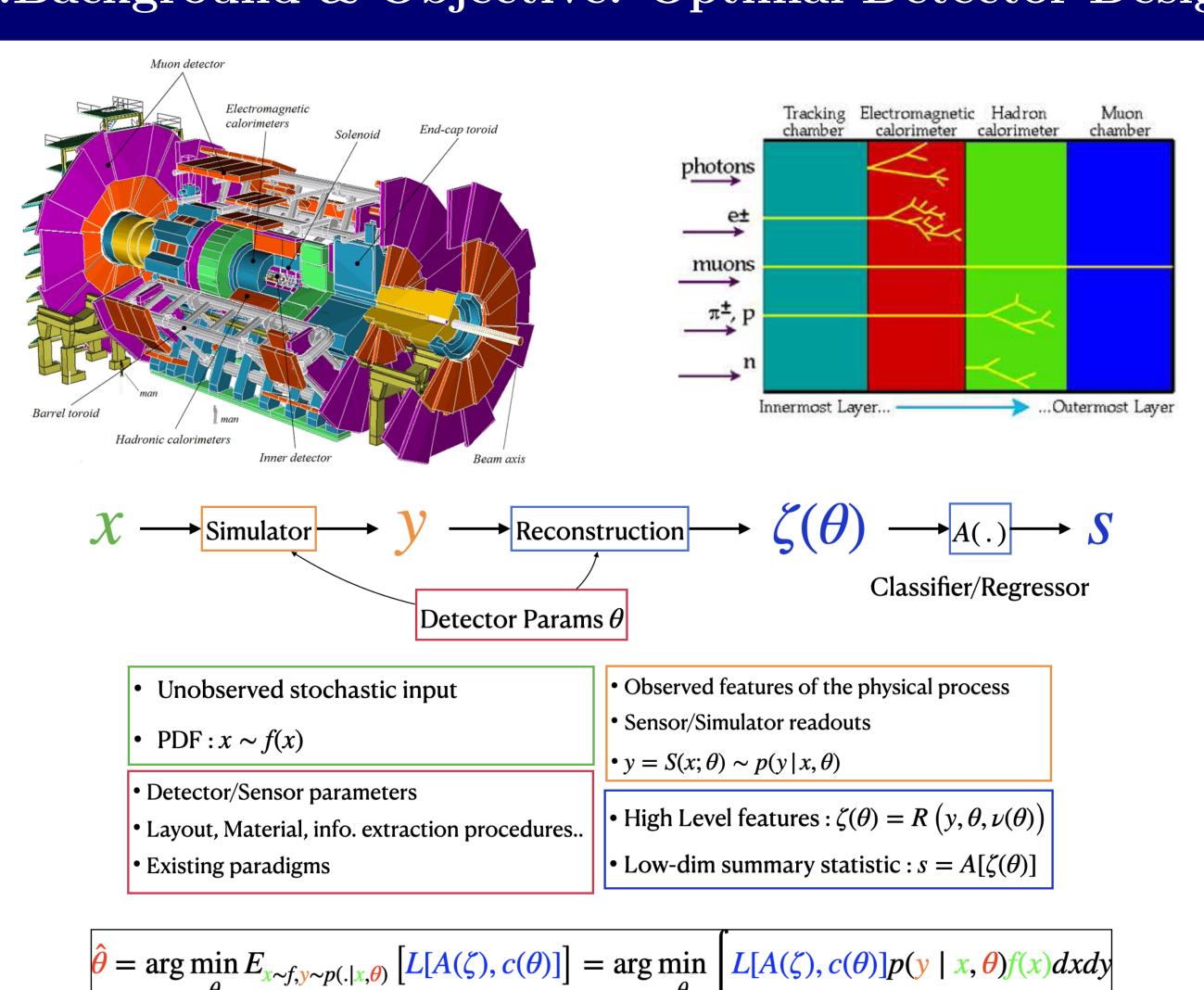
# Fast Detector Simulation and Detector Design

\*Atul Kumar Sinha<sup>1</sup>, Bálint Á. Máté<sup>1</sup> Tobias Golling<sup>2</sup>, François Fleuret<sup>1</sup> \*atul.sinha@unige.ch

Department of Computer Science<sup>1</sup>, Department of Physics<sup>2</sup>; University of Geneva



### 1.Background & Objective: Optimal Detector Design



- Loss function  $L[A(\zeta), c(\theta)]$  constructed to appropriately weight the result of the measurement in terms of its desirable goals [1].
- $c(\theta)$  models the cost of the considered detector layout of parameters  $\theta$ .
- Generalised objective: Can we maximize mutual information between x and y? -Reconstruct x from y: use reconstruction performance as loss function.

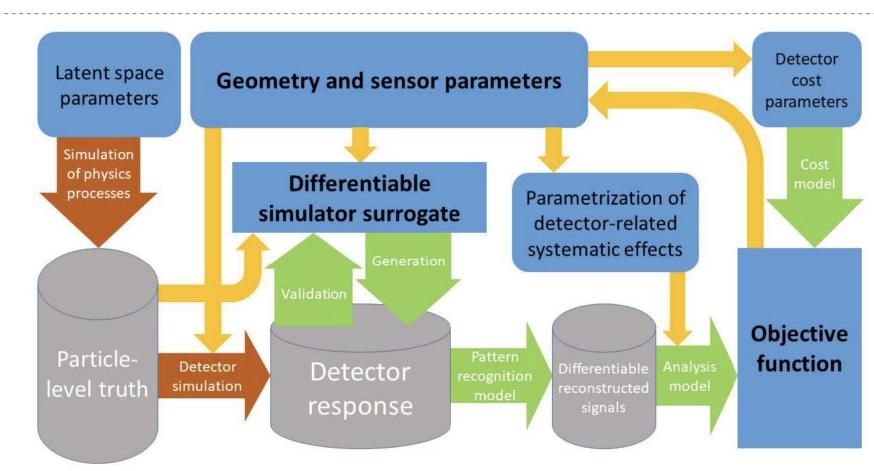
# 2. Solution Approaches I

- $p(y \mid x, \theta)$  not available in closed form and simulator not differentiable w.r.t.  $\theta$ .
- Forward simulation to sample from p(.) and approximate:

$$\hat{\theta}_{a} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L\left[A\left(R\left(y_{i}\right)\right), c(\theta)\right]$$

- Differential simulator
- -Surrogates  $(y = \hat{S}(z, x, \theta))$ :

$$\nabla_{\theta}(L(\hat{y})) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} L \left[ A \left( R \left( \hat{S}(z_i, x_i, \theta) \right) \right), c(\theta) \right]$$



### 3. Solution Approaches II

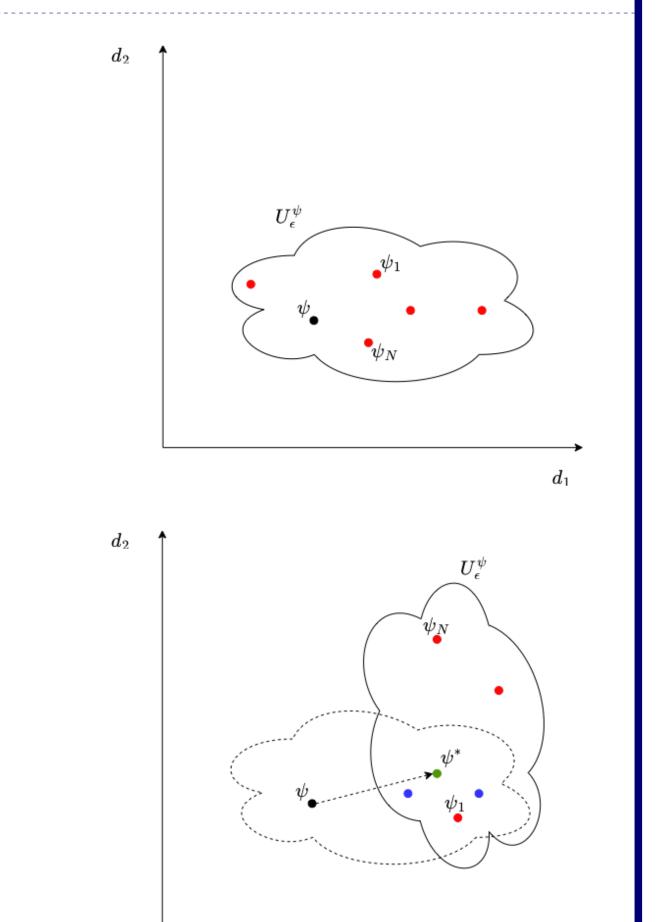
- Multiple experimental goals with a single detector/equipment
- Divide and conquer: isolate the parameter space  $\theta$  into different components and optimize them separately for a sub-manifold of possibly sub-optimal solutions. - Combine these sub-manifolds to obtain full solution

#### Algorithm 1 Local Generative Surrogate Optimization (L-GSO) procedure

**Require:** number N of  $\psi$ , number M of x for surrogate training, number K of x for  $\psi$  optimization step, trust region  $U_{\epsilon}$ , size of the neighborhood  $\epsilon$ , Euclidean distance d

- Choose initial parameter  $\psi$
- while  $\psi$  has not converged do
- Sample  $\psi_i$  in the region  $U_{\epsilon}^{\psi}$ , i = 1, ..., N
- For each  $\psi_i$ , sample inputs  $\{\boldsymbol{x}_j^i\}_{j=1}^M \sim q(\boldsymbol{x})$
- Sample  $M \times N$  training examples from simulator  $oldsymbol{y}_{ij} = F(oldsymbol{x}_{j}^{i}; oldsymbol{\psi}_{i})$
- Store  $y_{ij}, x_i^i, \psi_i$  in history H  $= 1, \ldots, N; j = 1, \ldots, M$
- Extract all  $y_l, x_l, \psi_l$  from history H,

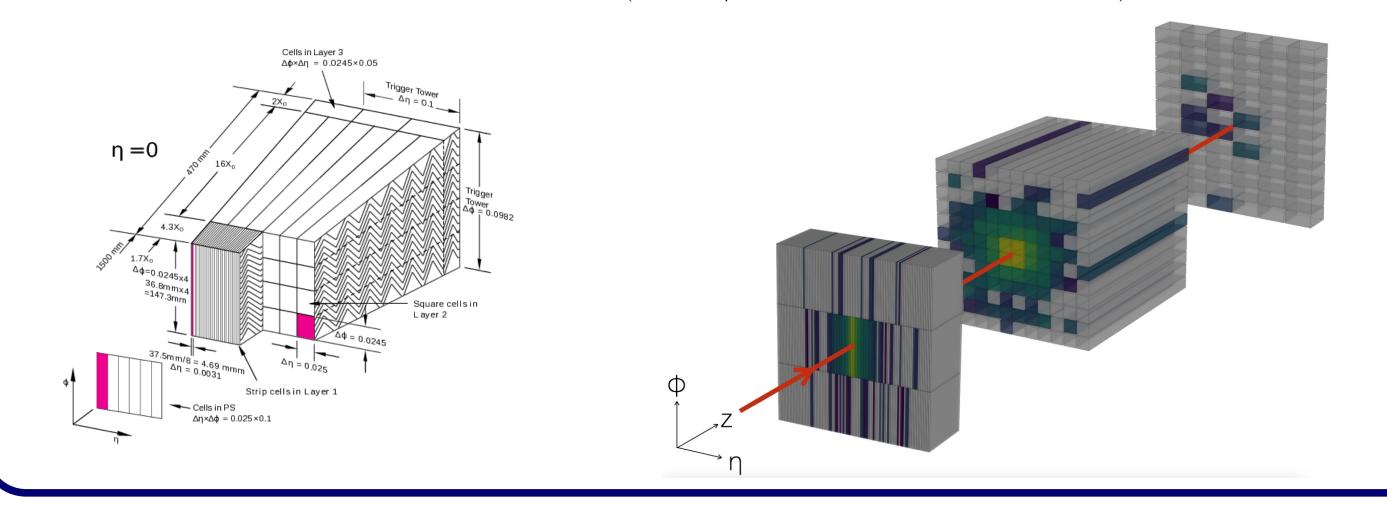
- Train generative surrogate model  $S_{\theta}(\boldsymbol{z}_l, \boldsymbol{x}_l; \boldsymbol{\psi}_l)$ , where  $\boldsymbol{z}_l \sim \mathcal{N}(0, 1)$
- Fix weights of the surrogate model  $\theta$
- Sample  $\bar{\boldsymbol{y}}_k = S_{\theta}(\boldsymbol{z}_k, \boldsymbol{x}_k; \boldsymbol{\psi}), \boldsymbol{z}_k \sim \mathcal{N}(0, 1),$  $\boldsymbol{x}_k \sim q(\boldsymbol{x}), \ k = 1, \dots, K$
- $\nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})] \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \mathcal{R}}{\partial \bar{\boldsymbol{y}}_{k}} \frac{\partial S_{\theta}(\boldsymbol{z}_{k}, \boldsymbol{x}_{k}; \boldsymbol{\psi})}{\partial \boldsymbol{\psi}}$
- $\boldsymbol{\psi} \leftarrow \operatorname{SGD}(\psi, \nabla_{\boldsymbol{\psi}} \mathbb{E}[\mathcal{R}(\bar{\boldsymbol{y}})])$
- 13: end while



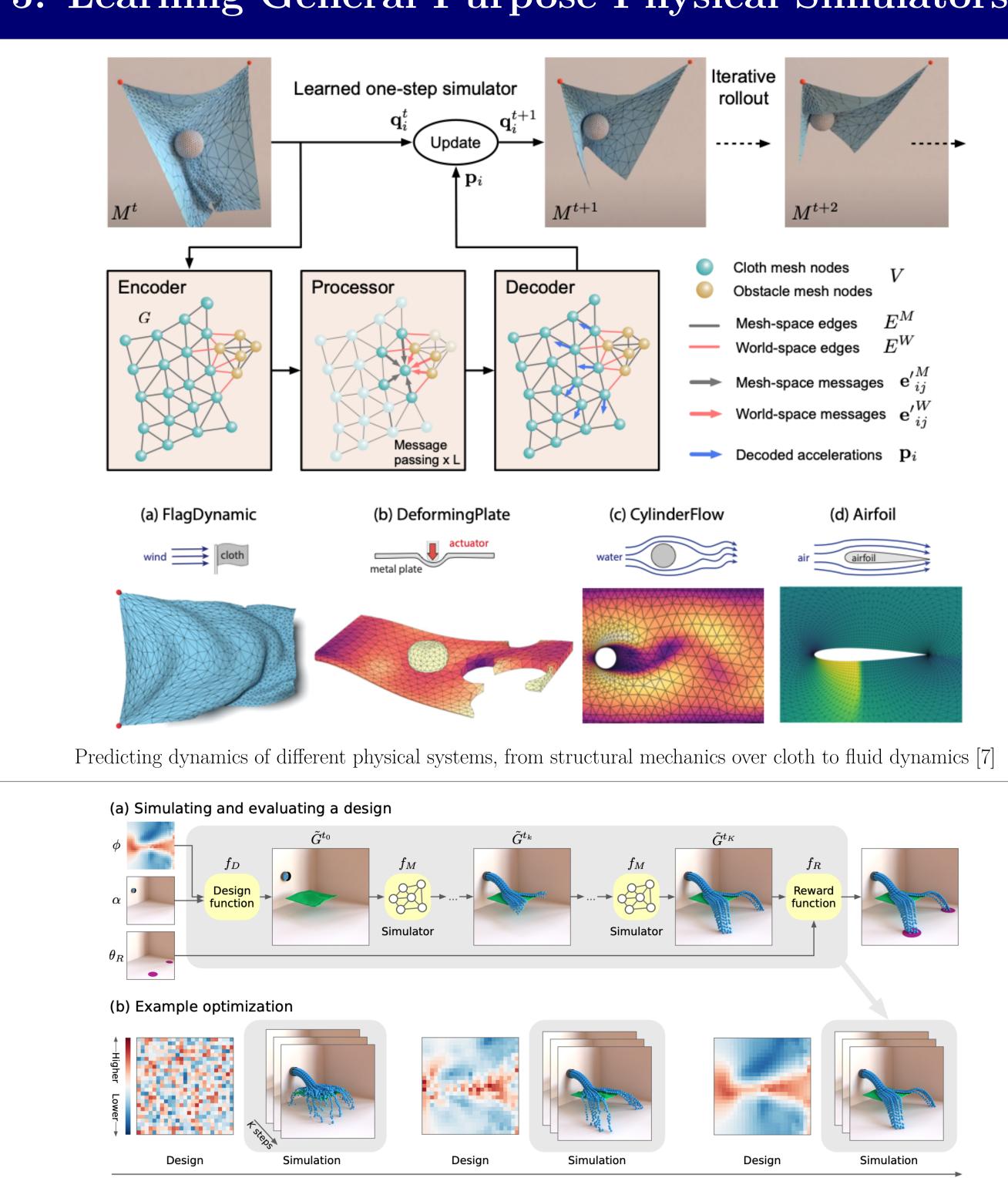
Black-Box Optimization with Local Surrogates [2]

# 4. Calorimeter Simulation and Optimization

- Simulation helps design detectors during R&D phase and in understanding its response for physics studies and analysis.
- Geant4: Physics-based trajectory modelling of particles propagating in material [3].
- FullSim framework, iterative and based on Monte-Carlo, initialised with construction of material & geometry, particle types and physics processes.
- Latency bottleneck as  $\mathcal{O}(10^{11})$  simulations needed for accurate inference.
- FastSim is a trade-off between simulation time and accuracy:
- Fast simulation hooks in Geant 4.
- Deep generative models: CaloGAN [4], CaloFlow [5], CaloScore [6], etc.
- For optimization of calorimeter design itself  $\rightarrow$  need generative models additionally conditioned on design parameters  $\theta$  (shape/geometry, material, etc.)

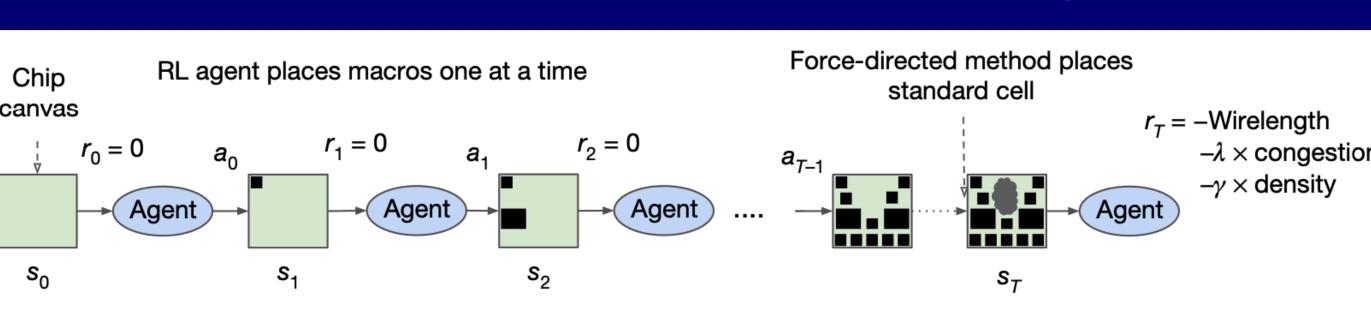


### 5. Learning General Purpose Physical Simulators



• Goal is to direct a stream of water (shown in blue) into two "pools" (shown in purple) by designing a "landscape" (shown in green) parameterized as a 2D height field

## 6. Other Examples: Optimal Chip Design



Optimizing a physical design [8]

Overview of chip design method [9] and training regimen. In each training iteration, the RL agent places macros one at a time (actions, states and rewards are denoted by  $a_i$ ,  $s_i$  and  $r_i$ , respectively) Once all macros are placed, the standard cells are placed using a force-directed method. The intermediate rewards are zero. The reward at the end of each iteration is calculated as a linear combination of the approximate wirelength, congestion and density, and is provided as feedback to the agent to optimize its parameters for the next iteration.

#### 7. References

T. Dorigo et al. Toward the end-to-end optimization of particle physics instruments with differentiable programming: a white paper. 2022. [2] Sergey Shirobokov, Vladislav Belavin, Michael Kagan, Andrey Ustyuzhanin, and Atilim Günes Baydin. Black-box optimization with local generative surrogates. Advances in Neural Information Processing Systems, 2020-December, 2 2020. Geant4 advanced course 2021 @ cern, howpublished = https://indico.cern.ch/event/1019834/contributions/4280323/attachments/2210461/3959556/g4course\_fastsim\_handout.pdf, note = Accessed: 2010-09-30. Michela Paganini, Luke de Oliveira, and Benjamin Nachman. Calogan: Simulating 3d high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks. Physical Review D, 97(1):014021, 2018. [5] Claudius Krause and David Shih. Caloflow: Fast and accurate generation of calorimeter showers with normalizing flows. arXiv preprint arXiv:2106.05285, 2021.

6 Vinicius Mikuni and Benjamin Nachman. Score-based generative models for calorimeter shower simulation

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-based simulation with graph networks. 10 2020. [8] Kelsey R. Allen, Tatiana Lopez-Guevara, Kimberly Stachenfeld, Alvaro Sanchez-Gonzalez, Peter Battaglia, Jessica Hamrick, and Tobias Pfaff. Physical design using differentiable learned simulators. 2 2022. A. Mirhoseini et al. A graph placement methodology for fast chip design. Nature 2021 594:7862, 594:207-212, 6 2021.