BUG or FEATURE?
The importance of data quality in science

Martin Kunz
Physique Théorique, Université de Genève
The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.
Planck: a microwave telescope in space

launch
14 May 2009
13:12:02 UTC

mission terminated
October 2013
the cosmic microwave background: a photo of the adolescent universe
How to get good data?

• **Avoid contamination: go to space**
 • Clean environment (except when it isn’t)
 • But: in space no-one can hear you scream (hard to fix problems)

• **High sensitivity**
 • Reduce ‘statistical’ error bars as far as possible
 • Makes any detection much more convincing
 • But needs control of ‘systematic’ problems

• **Build in redundancy**
 • Measure (and analyze) same things in different ways
 • Multiple detectors, redundant scanning, independent analyses
 • Allows for cross-checks
 • Prefer cross-correlations over auto-correlations

• **Keep looking for problems**
Ceci n’est pas une mesure ...
Ceci est une mesure!

3 minutes of quasi ‘raw” data (i.e. only demodulated). The Solar (cosmological) dipole is clearly visible at 145GHz with a 60 seconds period (the satellite rotates at 1 rpm), while the Galactic plane crossings (2 per rotation) are more visible at 545 GHz than at 143 GHz. The Dark bolometer sees no sky signal, but displays a similar population of glitches from cosmic rays.
Not everything can be anticipated

• There are always surprises
 • Checking everything is crucial
 • Simpler in the past: just look at all the data, see if something appears ‘weird’

• No-one will be able to look at all the data ever again … only machines!
 • Planck data set: ca 10^{12} samples, a few terabytes
 • SKA (large radio telescope) expected data rate: several GB/s!
 • But how do you tell a computer what is ‘weird’?

• With Planck we found some surprises ‘the hard way’
 • Active solar period: solar rays much worse than expected
 • Needed to build a detailed model of the satellite to understand signatures of cosmic ray hits to subtract them out
 • Space-qualified analog-digital converter was badly suited
 • In principle known, but no-one realized what it meant
 • Unexpected gain variations observed in data
 • Needed to characterize ADC on actual data (in space no-one…)
 • The ADC was an unknown unknown … there were others …
This should be white noise …
Jackknife PBR calculations

- Calculate various stats per ring and look for outliers
- Currently flagging rings for outliers in std, skewness, kurtosis

###Stats

Mean

![Mean](image1)

Standard deviation

![Standard deviation](image2)

Skewness

![Skewness](image3)

Kurtosis

![Kurtosis](image4)

###PBR histogram

![PBR histogram](image5)

###KS test

![KS test](image6)

###Mean-subtracted KS test

![Mean-subtracted KS test](image7)

###Average PSD

![Average PSD](image8)
Is it unexpected ‘new physics’?

No-one will believe you

• In the 1990’s there were multiple claims that the then-standard model of cosmology was not compatible with data
• For example from the distribution of galaxies in the Universe, or from the observed sizes of radio galaxies – but no-one trusted that data
• Here the opinion of the community in 1995:

(telescoper.wordpress.com)
scientific revolutions

But the scientific method works:
- Evidence accumulates and eventually new data triggers a paradigm ‘phase transition’ – trust in the data is critical!

Brightness of ‘standard candles’ as a function of distance

Riess et al ‘98 (Nobel prize 2011)

- $\Omega_M=0.24$, $\Omega_\Lambda=0.76$
- $\Omega_M=0.20$, $\Omega_\Lambda=0.00$
- $\Omega_M=1.00$, $\Omega_\Lambda=0.00$
scientific revolutions

But the scientific method works:

- Evidence accumulates and eventually new data triggers a paradigm ‘phase transition’ – trust in the data is critical!

Brightness of ‘standard candles’
as a function of distance

Riess et al ‘98
(Nobel prize 2011)

$\Omega_M=0.24, \Omega_\Lambda=0.76$

$\Omega_M=0.20, \Omega_\Lambda=0.00$

$\Omega_M=1.00, \Omega_\Lambda=0.00$
And how about today?

Enigma of the day: Different observations find a different expansion rate of the Universe!

• Either some observations are wrong, or the model that connects them is wrong.
• We don’t know yet...

• All of these observations were made taking utmost care to avoid problems.
• But we all know that there are surprises.

So far the community is skeptical as to whether this is ‘new physics’

Vivien Bonvin, Sky&Telescope 2019